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1. Phys.: Condens. Matter 6 (1994) 7521-7535. Printed in the UK 

Jahn-Teller effects in coexisting tetragonal and trigonal 
systems 

Y M Liu, J L Dunn and C A Bates 
Physics Depamnenf, The UniversiTy, Nottingham NG7 ZRD, UK 

Received 14 June 1994 

Ahstract The strongly coupled Jahn-Teller (IT) system is studied in which an ion in an orbital 
TI  triplet state is coupled to both e and tz modes of vibrations of its neighbours. Such a system 
is usually considered to be either a T @  (e+ t2) IT system, in which orthorhombic minima in the 
fivedimensional Q-space are lowest in energy. or a T @ d  system, which has a m i g h  of lowest 
energy. However, it is possible also for the tetragonal and trigonal minima, usually associated 
with the T@e and T@t m effects respectively, to coexist with very similar energies to each other 
(and be of overall lowest energy) when the bilinear term of the vibmnic interaction is present. 
This situation is described in this paper. A set of vibronic ground states is obtained by mixing 
the symmetry-adapted vibronic TI wound states of the TI  @ e  and TI  @ 12 JT systems. This is 
different to the set of states associated with the orthorhombic minima. Analytical expressions for 
the first- and second-order IT reduction factors are also derived for the coexisting system. AS a 
consequence of this analysis, an improved version of the theory of second-order reduction factors 
is obtained. The reduction factors are compared to those of existing numerical calculations for 
the TI @ d IT system and it is shown that very good agreement is obtained between the two in 
the strong-coupling limit. 

1. Introduction 

Uniaxial stress is often used as an experimental technique for the study of magnetic impurity 
ions in semiconductors in cases where the interaction with the surrounding lattice is strong. 
For orbital triplet ions in Il-V semiconductors, the effect of a uniaxial stress of E-type 
symmetry (e.g. stress along (OOl}) is usually an order of magnitude larger or smaller than 
that of a stress of T2-type symmetry (e.g. along (111)). These two extremes are said to 
involve T @J e and T @J t2 Jahn-Teller (IT) systems respectively as in such cases the ion 
is strongly coupled to either e or tz-type lattice vibrations. However, in a minority of 
cases, one finds that the two stresses have effects of a similar order of magnitude. It is 
usual to interpret the latter result as implying that a T @I (e + t2) JT effect is operating 
in which the lowest-energy minima in the potential energy surface are of orthorhombic 
symmetry (e.g. Bates 1978). In this paper, we wish to examine the altemative possibility 
that the orthorhombic extrema are higher in energy than both the tetragonal and trigonal 
wells, but that the tetragonal and trigonal wells have virtually the same energy as each other. 
This suggests an alternative theoretical framework for modelling the experimental results 
obtained on such magnetic impurity systems. 

As a detailed background to this work, we note that much numerical and theoretical 
work exists concerning Jahn-Teller (JT) effects in which an orbital TI triplet level is coupled 
to both e and tz modes of vibrations of its neighbours. For example, Sakamoto (1982) 
calculated the energy levels and Ham reduction factors for the case in which the two 
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phonon modes have equal coupling strengths and frequencies. Four different quadratic 
couplings were included in the analysis in tum. A different approach was used by Lister 
and O’Brien (1984), based on earlier work of OBrien (1969) for the strong-coupling regime. 
By introducing an effective adiabatic potential surface, they deduced specific properties of 
the system by studying its shape. O’Brien (1971, 1990) published numerical results for 
the first- and second-order reduction factors for the T 8 (e + tz) system in the special case 
of equal coupling, but the results did not include the effect of the quadratic terms in the 
Hamiltonian and therefore the symmetry of this system is higher than cubic. 

In this paper, we will adopt the unitary transformation method used by Bates era1 (1987), 
Dunn (1988, 1989) and Dunn and Bates (1989) to study the sbongly coupled JT system in the 
equal-coupling case. In our discussion, the bilinear quadratic coupling term will be added 
into the vibronic Hamiltonian (and thus the system retains its cubic symmetry). It will be 
shown that for certain ranges of magnitude and sign of the bilinear coupling constant, the 
tetragonal and trigonal minima coexist. Subsequently, the ground vibronic states localized 
in these minima (or wells) are mixed to construct a new set of ground vibronic states by 
diagonalization of the full vibronic Hamiltonian (including the bilinear term). Finally, the 
results obtained All be used to calculate first- and second-order reduction factors for the 
coexisting system. The calculation of second-order reduction factors is performed using a 
modified version of the method of Polinger et a1 (1991) in which the general expressions 
derived for the reduction factors are improved. It is only necessary then to evaluate a 
few reduced matrix elements of vibronic states instead of summing over a large number of 
overlaps of phonon states. Also, asa  good approximation in strong coupling, the symmetry- 
adapted excited vibronic states for the separate T @ e and T @ tz IT systems are used as 
basis states for the calculations here. 

2. The Hamiltonian and unitary transformation 

The Hamiltonian for a TI (1 = 1) ion that is coupled both linearly and bilinearly to e modes 
(&e, Q,) and t2 modes (Q4, Q5, Q6) of a cluster of cubic (Td) symmetry is (Bates et al 
1987) 

1-I = ‘Hvib + ‘Him f (2.1) 

where 

‘F lv ib  = (22/1)-’(p; f P: + p: + P: f pi)1 

+ (~ /2 )14(Q:  + Q:) + m%Qi + Q: f Q?J11 
‘H. mi - L v  - 2 E(peQ8 - 3 1 J 2 ~ , Q , ) - ( 3 1 J 2 / 2 ) V ~ ( 7 - ~ Q 4 + 7 - 5 Q 5  t 7 - 6 Q 6 )  (2.2) 

1-I:: = (31/2/2)V~~(Qd-$Qs + (31’z/2)Qc17-4 

+ Q d - i Q e  - (31/2/2)Q,17-5+ Q6Qo7-6) 

with respect to a set of TI electronic triplet states I x ) ,  ly)  and lz), where, in matrix form, 
1 0 0  1 0  0 1 0 0  

(2.3) 
0 0 0  0 0 1  0 1 0  
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Xvt, represents the elastic energy of the cluster, Xint the linear couplings and XEk describes 
the bilinear coupling to one e-type and one t2-type mode. Pj is the momentum conjugate 
to Qj, V, is the linear coupling constant for the e modes, VT that for tz modes and V ~ L  is 
the bilinear coupling constant. @ is the mass and OE and q are the frequencies of e modes 
and tz modes respectively. 

For strongly coupled JT systems, the transformation approach of Bates et al (1987) and 
Dunn (198’8) may be adopted in which a transformation of the form 

(2.4) 

is applied to ‘H in (2.1). where the a, are free parameters. This produces a transformed 
Hamiltonian 

(2.5) 72 = UtXU = el +‘Fi, 

such that f& contains terms representing coupling to excited phonon states while 7?1 contains 
only electronic operators. Consequently when the ground states of the system arefequired, 
only 7?! needs to be considered. To obtain the ground states and their energies, ‘HI should 
be minimized with respect to the aj as in the method of dpik and Pryce (1957). This 
gives values of aj which define the positions of extrema points of tetragonal, trigonal and 
orthorhombic symmetry in the five-dimensional Q-space. 

Comparing the results obtained here with those obtained in linear coupling by Bates 
et a1 (1987), it was found that the inclusion of the bilinear term in the Hamiltonian has 
no effect on the positions of extrema points, eigenstam’and energies in the tetragonal and 
trigonal cases, but that the values of a?’ for the orthorhombic extrema are multiplied by 
@E for j = 8 and E and by h for j = 4, 5 and 6, where 

in which the constants KE.  KT and KBL are defined by 

The energies of the orthorhombic extrema become (Dum and Bates 1989) 

However, the corresponding eigenstates are still unchanged. We note that the expression 
for the energy EET.of orthorhombic wells given in equation (6.2) of Bates et a1 (1987) was 
approximate because the factor [l - 4 K ~ L / ( h z ~ ~ w r ) ] - ’  appearing in (2.8) was taken to be 
unity. It is impoaant to use the exact result here as this factor is very important in the 
subsequent discussion for the case of equal coupling in which the tetragonal and trigonal 
minima coexist 
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3. Equal coupling and the coexistence of tetragonal and trigonal minima 

In terms of the parameters defined in (2.7), the expressions for EE (the JT energy at the 
tetragonal extrema) and ET (the JT energy at the trigonal extrema) are 

EE = -4Kg/(fto~) ET = -4K$/(3f~.). (3.1) 

For the equal-coupling case, we take EE = ET = E and WE = cm = W .  It follows then that 
~ K E  = KT = K and (2.8) thus becomes 

(3.2) 

The values of KBL for which the tetragonal and trigonal minima coexist can be obtained by 
setting 

Em > E (3.3) 

to push the tetragonal and trigonal extrema below the orthorhombic extrema. This occurs if 

(3.4) 0 < KBL/(hto) < 4714. 

It is possible to determine whether these lowered extrema are absolute minima or saddle 
points by applying the method described by Bersuker and Polinger (1989). It is well known 
that in each of these extrema, the e and tz vibration modes labelled according to the cubic 
Td group, are reduced to a set of new modes belonging to a group of lowered symmetry. 
In fact, at tetragonal extrema the symmetry is reduced to Du and we have E + AI fB B1 
and T2 + B2 @E. At the trigonal extrema, the symmetry is lowered to C.iv and we have 
E -+ E and Tz + A, fB E. By applying ordinary perturbation theory, it is found that the 
curvatures K (defined as the second derivative of the potential function with respective to 
Qj) at the tetragonal extrema are 

K B ~  = j l h 2 W 2  2 2  KA, = KB, = fifi W 

At the trigonal extrema, the curvature K A ~  = &oz, and KE (which has two different 
components in this case) is obtained from diagonalizing the matrix 

With (3.5) and (3.6), one can easily show that the curvatures at tetragonal and trigonal 
extrema are all positive (in the trigonal case, the determinant of the matrix in (3.6) is 
positive) for the ranges of the sign and magnitude of KBL shown in (3.4). Therefore these 
extrema are absolute minima or ‘wells’. The eigenstates localized in these wells can be 
transformed back and linearly combined using projection operator techniques (Dunn 1989) 
to obtain symmetry-adapted cubic vibronic ground states. Thus we have 

ITlxe) = In’; 0) IT& = Iy’; 0) ITlze) = Iz’; 0) (3.7) 
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for the tetragonal case of TI @ e system, and 

with 

for the trigonal case of TI @ tz system. Nt = (4)[1 + S,/3]-1/2 is the normalizing factor 
in which St = e x p [ - ( ~ ) ( K / h ~ ) ~ ]  is the oscillator overlap between two trigonal wells. In 
the above equations, 16‘; 0) (IF].$; 0) (6 = x ,  y.  z, a,  b, c, d). where 6 labels the well 
and ‘0’ denotes that there are no phonon excitations with respect to the transformed picture, 
and U, is the value of the unitary transformation U evaluated at the 6 minimum. 

It should be noted that, in  driving the above cubic ground states using the transformation 
method, f i z  is neglected (section 2). Thus to take into account the effect of the bilinear 
term, better approximations to the exact eigenstates are obtained by diagonalizing the full 
vibronic Hamiltonian introduced in (2.1) with the symmetry-adapted states in (3.7) and (3.8) 
as bases. Since the Hamiltonian is a scalar of the cubic group and ITlye), ITlyt) ( y  = x ,  
y .  z) transform according to the row y of the irreducible representation TI of the same 
cubic group, there are only three unique matrix elements of the Hamiltonian. These can be 
written as follows: 

(T~y’elXlT~ye) = HII~,,, 

(T~y’elXlT~yt) = HIzS,,, 

(Tiy’tlHlTiyt) = HzzG,,, 

(Tly‘tIXlTiye) = HzIG,,, 
(3.10) 

where 

In the above, Set(= exp[-($)(K/Fz~)~]) is  the oscillator overlap between tetragonal and 
trigonal wells in the equal-coupling base. Also (3.10) implies that E can only mix states 
which have the same symmetry transformation properties. Thus the calculation of the 
eigenvalue problem for the ground states can be carried out within a two-dimensional 
subspace so that the problem can be reduced to solving the simple matrix equation 

(3.12) 
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where S = (Ti yelTl yt) = (TlytlTlye) = -(4/fi)NI&. The new ground vibronic states 
are then written in the form 

Y M Liu et a1 

I T I W  =iW~ye)+CtITly t )  ( y  =x,Y,z) (3.13) 

where and ft are combination coefficients. Solving (3.12), it is found that 

t = 1/(1 +m+ P ) 112 = p / ( l  + 2ps + p2)‘JZ (3.14) 

where 

P = (E:) - HidJ(H1z - Ei:’S) 

and where the energy of the ground vibronic state is 

ET:) = f ( l  - S 2 ) - ’ ( H ~ 1 + H 2 z - 2 H 1 2 S - A )  

(3.15) 

(3.16) 

with 

(3.17) 

(In the strong-coupling limit, the above expressions simplify such that <I = fJ; with the 
ground state taking the negative sign.) 

A = [ ( H I I + H ~ - ~ H ~ ~ S ) ~ - ~ ( ~ - S ~ ) ( H ~ ~ H ~ - H ~ ~ ) ]  2 112 . 

4. First-order reduction factors 

It is well known that, in spectroscopic studies, an ion in a crystal can often be conveniently 
described by an effective Hamiltonian in which the electronic terms are multiplied by 
parameters frequently referred to as reduction factors. An analysis of the reduction factors 
appearing in such effective Hamiltonians is one of the best ways of observing and identifying 
JT effects in solids (e.g. Ham 1965, O’Brien 1969, Bates 1978). In fact, in many real systems, 
the importance of JT effects is reflected by the size of the reduction factors and thus their 
calculation is’fundamental to JT theory. In this section, we will extend OUI discussions to 
the calculations of both the first- and second-order reduction factors using the new ground 
vibronic states and the energy obtained above. (‘First-order’ reduction factors arise when 
a perturbation V is used in a first-order perturbation theory calculation and ‘second-order’ 
reduction factors when V is used twice in a second-order perturbation theory calculation.) 

4.1. The general result 

The basic definition of a first-order reduction factor is that it is the ratio of the diagonal 
matrix element of an orbital operator within a vibronic state to that of the diagonal matrix 
element of the same orbital operator within the corresponding orbital states. Thus the 
first-order reduction factor K ( ’ ) ( r )  is defined in general terms by 

P ( r )  = (ozu~.IL~,Iocu~)/(x~~IL~~Ixu~). (4.1) 

In the above, 1OZu) are the ground vibronic states, ]Xu)  the orbital states and LrY the 
symmetrized orbital operators, where Cu, r y  label the transformation properties according 
to the appropriate point group. (For example, pa, as defined in (2.3), could be the orbital 
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operator L p ,  ITlxe), as defined in (3.7), could be a vibronic state IOCu) of x-type symmetry, 
and Ix) the corresponding orbital state 1%)). If we define 

(CO; lLry I Ccrj) = (r y Xuj I Xui) (4.2) 

where (ryEujICui) are the Clebsch-Gordan (CG) coefficients, then the definition of first- 
order reduction factors in (4.1) is simplified to 

K(I)(r) = (OCIIL~IIOE). (4.3) 

The specific form of the Lry  which have E, TI and TZ symmetries and which satisfy the 
definition (4.2), are given by 

t Ci are the orbital creation operators, which are defined in terms of the orbital vacuum states 
10) such that CjlO) = Ix), C$O) = Iy) and CilO) = lz). Ci are the orbital annihilation 
operators corresponding to C!. In many cases, the above expressions for the orbital 
operators are not important since the definition (4.2) suffices for calculation purposes if 
the CG coefficients are available. 

With the new ground vibronic states derived in section 3, the first-order reduction factors 
are given by 

Figure 1 shows the variations of K(I)(TI), K( ' ) (Tz )  and K(l)(E)  as functions of K / E o  with 
KBL = 0.3. It is seen that K[')(Tl) + 0, K(l)(Tz) -+ 4 and K(')(E) + 1 (approaching 
the value of 0.5 from below) in the strong-coupling limit. 

4.2. The linear equal coupling limif 

Our results are different to those of OBrien (1971)  for the linear equal-coupling case 
(when the bilinear term is zero) because the Hamiltonian she used has 'accidentally' a 
higher symmetry (of the rotation group SOS) .  The inclusion of the bilinear term reduces the 
symmetry of the IT system to cubic. In fact, if the linear terms of the vibronic interaction are 
considered only, then the ground vibronic states in (3.7) and (3.8) can be combined to form 
a new set of ground vibronic states of which the corresponding phonon states transform 
according to the irreducible representation 1 = 2 of the SO(3) group. The appropriate 
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U" 

Figure 1. The fint-order reduction facton K(I)(TI), K ( I ) V z )  and K(')(E) plotted as functions 
of K f i w  with KBL = 0.3. 

combination coefficients {L and {: can be found by using the condition that the symmetry- 
adapted phonon states satisfy the relation (Bersuker and Polinger 1989) 

{O(Ti)TzllOcl~)Tzl= (~)KW,)EIIO(Ti)E). (4.6) 

The phonon states are written in the form lO(r)Ah) and can be obtained by comparing 
(3.13) with the general expression for the ground vibronic states (Folinger et al 1991): 

l o r y )  = Ico)lO(r)Ah)(xuAh.lry). (4.7) 
nhh 

Therefore using (4.6) together with the normalization condition, we obtain 

(4.8) n I12 <: = -p'/(l - 2p'S -t p ) n If2 c; = 1/(1 - 2p'S + p ) 

with 

pa = (i)(1 - Se) / [N,20  - St)] s = - @/A) NtS,,. (4.9) 

Replacing <e and in (4.5) by {i and 5: and replotting the first-order reduction factors, we 
find that now K(ll(T2) + K")@) which is not the case in cubic symmetry. We also find 
that, in the strong-coupling limit, K(')(Tl) --f 0 as before, but that K"'(T2) and Kc')@) 
tend to the value 1 as shown in figure 2. In figure 3, our results are compared to those 
of O'Brien (1990): they agree in the strong- and zero-coupling limits but differ for other 
values of the coupling constant. This is not surprising as our states are constructed from 
functions based on potential wells. 
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0.3 . 

0.2 - 

0.0 0.5 1 .o 1.5 2.0 2.5 3.0 
K" 

Figure 2. The first-order reduction facton K"'(Ti). K( ' ) (Tz )  and KC')@) plotted as a function 
of Klho when only linea coupling terms are considered and states appropriate to so@) are 
constructed. 

In the equal-coupling case without the bilinear term, there is a continuous equipotential 
surface connecting together the 13 extrema which occurs when the quadratic coupling is 
included. Consequently, our transformation method should not be applicable. In producing 
the results shown in figure 2, we have constructed wave functions centred on the seven 
'minima' in &space and added the condition which makes the phonon states given in 
(4.6) appropriate to so(3) symmetry. However, we have not included the bilinear term in 
this calculation, and thus the seven 'minima' are not true minima at all. Nevertheless, 
our transformation method has given sensible results at the two limits and in between the 
differences are not too large. Presumably, this is because the wells in the strong-coupling 
limit are infinitely sharp and the points chosen are sufficient in number to map accurately 
the T 8 d system. Figure 1 should give an accurate picture of the reduction factors when 
bilinear coupling is included (as the symmetry is cubic), when there is no reason why 
K"'(T2) should be equal to K"'(J3). The symmetry in figure 2 is moving towards SO(3) 

and the results from O'Brien (1971) in figure 3 are of symmetry SO(3) exactly. 

5. Second-order reduction factors 

In strong coupling, second-order reduction factors become particularly important as in many 
cases the first-order factors are small. They azise from non-zero matrix elements of V 
between the ground vibronic state and all the excited vibronic states as deduced in the usual 
perturbation theory summation. They satisfy the usual requirement that the matrix elements 
of the effective Hamiltonian within the purely electronic basis states are identical to those of 
V within the ground vibronic. stam (e.g. Bates et al 1987, Dunn and Bates 1989, Bersuker 
and Polinger 1989). 
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Figure 3. The first-order reduction factors calculated in this work compared to the numerical 
results of O'Brien (1971). (Note that the relation between our K and the k of O'Brien is 
k = J I O K ) .  The dashed line refers to our results for K("(T2)  = K ( " ( F )  and the solid line to 
our resuits far K ( ~ ) ( T ~ ) .  The triangles (AAAA) give the results for K ( ~ ) ( T ~ )  = K ( ~ ) ( F )  from 
O'Brien (1971) and the solid circles (0.0) similar results for K(')(T,). 

5.1. Definitions 

From these basic definitions, Polinger et aL (1991) derived a general expression for the 
second-order JT reduction factors  in^ the form 

In the above, Tk and Ti denote the symmetry components of the perturbation V and j ( r )  
are the fictious angular momenta (see, e.g., Griffiths 1962). Also the 6 r  symbols are written 
with large square brackets and dimension of a representation with small square brackets. 
The oscillator overlap integrals are {O(r)Mljn(A)M). As can be seen from (5.3), in order 
to calculate second-order vibronic reduction factors for any real JT system, it is necessm 
to evaluate matrix elements involving the oscillator parts of the vibronic states. In the 
transformation method, this is done by comparing the vibronic states obtained with those 
in a general Clebsch-Gordan convolution form. 
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5.2. An alternative procedure 

The problem with this approach is that we have to handle a greater number of oscillator 
states than vibronic states. Thus a more convenient way, which we introduce here, is to 
use the vibronic states directly for the calculations. The introduction of the symmetrized 
orbit operators L p y  defined in (4.4) has made this possible. Thus it is found that, in terms 
of the reduced mamx elements of Lry  between the vibronic ground and excited states, the 
function S,,, introduced in (5.3), can be expressed either in the form 

q m r )  = [rl-l(-l)jcA’+jcr){nAIIL~ [lor) (5.4) 

or in the form 

sn(mr) = ( [ ~ ~ [ A l ) ~ l ’ z { O ~ l l L ~ ~ ~ n A ) .  (5.5) 

Thus either (5.4) or (5.5) can be used to replace (5.3) for the derivation of the S, function. 
We will use (5.4) for the following calculations. In the case when r k  = PI we have 

with 

s,(r,nrY = [ ~ I - ~ { ~ A [ I L ~ ~ I I O ~ ) ~ .  (5.7) 

We consider a TI ion at a Td site and take spin-orbit coupling as an example. In this case, 
r = rk = ri = TI. On substituting appropriate values for the 6 r  symbols into (S.l), we 
obtain 

KE’(TI @TI) = ~ R A ,    RE + ~ R T ,  + ~ R T ,  

K~)(TI  @ TI) = - ~ R A ,  - 1 2 R ~  + ~ R T ,  + ~ R T ,  

K:’(TI @TI) = ~ R A ,   RE + ~ R T ,  - ~ R T ,  

KT, (TI @ TI) = -~RA, ’  +  RE + ~ R T ,  - 9Rr2 

(5.8) 

0) 

where 

(5.9) 

In the above, the sums are over both n(= p + q + r + s + t )  and i, where the index 
i is used to distinguish between states of the same symmetry but different energy. The 
expression (5.8) for the reduction factors is exactly the same as that given earlier (Polinger 
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et ol 1991, equation (2.27)) for the case of a T@ t2 JT system but the definitions of the RA 
in (5.9) are completely different. 

In order to calculate RA for this case, expressions for the energies E:), E t )  are 
required together with the reduced matrix elements (nr'yllLT, llOT1). The ground vibronic 
states IOTly) and energy E t )  have been given by (3.13) and (3.16) respectively (note that 
lOTl y )  = IT1 yet), y = x ,  y ,  z )  and the symmetrized orbit operators LO by (4.4). Here 
we will use symmetry-adapted excited states of the T @ tz and the T @ e systems and their 
energies for the calculations. As in the case of the ground vibronic states (section 3), the 
excited vibronic TI and TZ states of the T 8 e system should be combined with those of 
the same symmetry for the T 0 t2 system to form the new sets of excited vibronic states. 
However, this calculation is complicated and may not have much effect on the final results 
so will not be attempted here. 

Instead, we start with the excited vibronic states for T @ tz JT systems constructed by 
Dunn (1989) using projection operator techniques. They are written in the form 

Y M Liu et al 

where Nj are normalizing factors, given in equations (4.8)-(4.10) of Dunn (1989), and the 
states I$ j )  are given in table 2 and equation (4.10) of Dunn (1989). The states with j = 1-3 
form one set of T1 states (r' = TY)), and the states with j = 4-6 another set (r' = TY)). A 
set of Tz states is formed with j = 7-9 (r' = TY)), and pairs of E-type states with j = 10 
and 11, j = 12 and 14 and j = 13 and 15 (r' = E(!), E(') and E(3)). The AI states are 
formed with j = 16 and the Az states with j = 17, 18 and 19 ( F i  = Ai') and c)). 
Their energies E$") = Ej(l ,  m,n) are given in equation (5.8) of Duun (1989). (In order to 
take into account the extra coupling to the e mode, we must add Ew to the latter energy). 

For T @ e IT systems, there are no vibronic states of A,, A2 or E symmetry. Those 
excited states which transform as TI and TZ can be written as 

where 0; denotes the presence of p excitations of the @,-type oscillator, etc. 
corresponding energies are given by 

The 

E$ = -4K2/(3Ro) + ( p  f q  + ;)to (5.12) 

in which i = 3 for q even and i =-2 for q odd. 

reduced matrix elements needed in (5.9) can be calculated. The result is 
As the excited vibronic states located in the two kinds of wells are given above, the 



where 

and where 

(5.13) 

(5.14) 

P = (4/&) s,,(za/3)'+'+'/(r!s!t!)I/Z 

Q = ( 4 4 3 )  NtSl(4A/3)'+"+'/(r!s!t!)'/2 

R = Se (Ad)' (A)q/ (2p!q!)L/z  

T = NJ,, (2A/&r f (p!) ' / ' .  

(5.15) 

In (5.15), Se = exp[-ZA'] is the oscillator overlap between the ground states located in 
any two of the tetragonal wells where A = K/Tzo. 

The reduction factors may be written in the form (Palinger er a1 1991, O'Brien 1990) 

C = KE)/3  BE = Kf) A = -K" TI 1 2 BT = Kg). (5.16) 

They are illustrated in figure 4 for KEL = 0.3. This figure clearly show that BT is not 
exactly equal to BE in the strong-coupling region as was obtained in the numerical results 
of O'Brien (1990). although the same qualitative behaviour is observed. The origin of this 
difference can presumably again be attributed to the addition of the bilinear term into the 
basic Hamiltonian as discussed in section 4, so that the symmetry is cubic rather than SO(3). 

6. Conclusions 

The transformation method developed by Bates eta1 (1987) and Dunn (1988, 1989) h a  been 
applied to the case when the seven tetragonal and higonal wells all have the same energy. 
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Figure 4. The second-order reduction factors A, BE, BT and C plotted as a function of K l h o  
wirh KBL = 0.3. mote rhaf the reduction factors do not exactly go through the origin bemuse 
the KBL term remains finite.) 

The inclusion of the bilinear coupling term in the Hamiltonian means that the trigonal and 
tetragonal wells can be pushed below the orthorhombic extrema by choosing a specific range 
of values for the constant KBL and that the system retains its cubic symmetry. The ground 
vibronic states localized in the tetragonal and trigonal wells are combined linearly using 
projection operators @unn 1989) to obtain vibronic states of cubic symmetry. However, 
this technique cannot mix the basis states in trigonal wells with those in the tetragonal 
wells. Therefore, a better approximation to the exact eigenstates for the problem is obtained 
by diagonalizing the full vibronic Hamiltonian (2.1) with the above-mentioned symmetry- 
adapted states as basis states. 

Within these new ground vibronic states, first-order reduction factors K(')(Tt), K(')(Tz) 
and .@)(E) have been calculated. We find that, in our results, K(')(Tz) # K(')(E) in 
strong coupling. This result is different from that obtained in the TO d case considered by 
OBrien (1990). The 'splitting' observed here is attributed to the inclusion of the bilinear 
term which has lowered the symmetry of the vibronic Hamiltonian from SO(3) to cubic. We 
have also shown that, if the ground vibronic states of TOe and TO tz systems are combined 
appropriately to form new ground vibronic states of which the corresponding phonon states 
transform like the irreducible representation 1 = 2 of the rotation group S0(3), then we find 
that K'l'(Tz) = K(')(E) + in the strong-coupling limit which is in agreement with the 
O'Brien result for the T 8 d case (O'Brien 1990). 

Finally, we have improved the general expression for the calculation of second-order 
reduction factors. By introducing a set of symmetrized orbital operators, results can be 
obtained by evaluating a few reduced matrix elements of vibronic states only instead of 
summing over many phonon overlaps, thus simplifying the calculations. It is necessary to 
point out that the general expression (5.1) for second-order reduction factors is suitable for 
the triplet case only. A further improvement is needed when applying (5.1) to the doublet 
system (Liu et al 1994). We have calculated the second-order reduction factors for the 
specific example of spin-orbit coupling. It is interesting to see that in  strong coupling BE 
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is not exactly equal to BT. This is in contrast to the T @ d case for which BE = BT. The 
discrepancy is again likely to be caused by inclusion of &e bilinear term. 

One real example to which the above theory may apply is that of GaPTi3+. In optical- 
absorption experiments on this system in which the 'E-to-'Tz transition is studied, Al- 
Shaikh et al (1994) have found significant splittings of many lines when uniaxial stress 
is applied along the (OOl), (111) and (110) directions of the crystal, which cannot be 
explained by an orthorhombic model. However, further work is needed to verify that the 
model of co-existing tetragonal and trigonal wells applies to this case. In contrast, electron 
paramagnetic resonance (EPR) experiments on GaAs:Cr'+ have clearly shown that, in that 
system, an orthorhombic T @ (e + t2) JT model is needed especially because the angular 
dependence of the EPR spectrum displays orthorhombic symmetry (e.g. Parker et al 1990, 
Krebs and Stauss 1977). Another possible candidate for a coexisting system is GaP:CS+; 
although this system was supposed initially to be an example of a T @ e IT system, on 
account of the Etype strain-stabilized EPR spectra observed (Darcha et ai 1987), there are 
problems which have still to be resolved. 

The need for a comprehensive JT theory in which the possibility that tetragonal and 
trigonal wells coexist has clearly been established. It is hoped that our calculations above 
will provide a realistic basis for future modelling. 
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